
Reinventing
Container Linux for
the Wasm Era (and
More) with System
Extensions
Andrew Randall
Principal PM Manager
Azure Core Linux

So you’re about to provision a new Linux server…

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Flexible, works for
just about any
application

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Flexible, works for
just about any
application

Sources: Palo Alto Neworks, Security Magazine

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Flexible, works for
just about any
application

Large attack
surface area

Manageability

Snowflakes /
config drift

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Kernel + systemd

Minimal (10s/100s)
collection of
packages

Container workloads
loaded at runtime

Immutable filesystem

Special Purpose Linux

Minimal attack
surface area

Manageability at
scale

Repeatable
deployments

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Kernel + systemd

Minimal (10s/100s)
collection of
packages

Container workloads
loaded at runtime

Immutable filesystem

Special Purpose Linux

Minimal attack
surface area

Manageability at
scale

Repeatable
deployments

The Linux distro dichotomy

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

General Purpose Linux

Kernel + systemd

Minimal (10s/100s)
collection of
packages

Container workloads
loaded at runtime

Immutable filesystem

Special Purpose Linux

Minimal attack
surface area

Manageability at
scale

Repeatable
deployments

Inflexible -
advanced
knowledge
required to
modify base
image

What if there were a better way…

Composable (Image-based) Linux

Kernel + systemd

Thousands of
included packages

Tens of thousands of
additional optional
packages

Fully mutable
filesystem

Kernel + systemd

OS extension layers
loaded at boot time

Container, Wasm
modules, etc., loaded
at runtime

Immutable filesystem

General Purpose Linux Composable Linux

Minimal attack
surface area

Manageability at
scale

Repeatable
deployments

Easy to create
custom OS flavors
from composable
system extension
layers

Kernel + systemd

Minimal (10s/100s)
collection of
packages

Container workloads
loaded at runtime

Immutable filesystem

Special Purpose Linux

Anatomy of a System Extension (sysext)

/usr
/opt

An overlay file
system containing

/usr & /opt

Packaged as a
disk image*

Loaded at boot time
by systemd-sysext

* typically; can also be plain directory or btrfs subvolume https://www.freedesktop.org/software/systemd/man/latest/systemd-sysext.html

sysext

https://www.freedesktop.org/software/systemd/man/latest/systemd-sysext.html

Flatcar has embraced sysext

/oem

Torcx Replacement /
Custom Container

Runtimes

OEM Partition Cluster API

Recent Applications in Flatcar Container Linux:
1) Torcx Replacement / Custom Container Runtimes

� torcx (from CoreOS)
� custom, tarball-based,

complex, inflexible

� No behavior change for default (e.g.
Docker, containerd)

� Easily add new runtimes (e.g. Podman)
alongside or replacing standard ones

sysext sysext sysext

Recent Applications in Flatcar Container Linux:
2) OEM Partition

� Separate partition fixed at
build time for platform-
specific tools/agents

� Not upgradeable without
reprovisioning entire node

� Sysext for each target platform
� In-place upgrades

/oem

sysext sysext sysext

Recent Applications in Flatcar Container Linux:
3) Cluster API

� Custom worker node images
combine OS + K8s control plane

� K8s + OS versions tied
� No in-place updates

� K8s control plane as sysext
� Stock distro images
� OS + K8s versions decoupled
� In-place updates

sysext

Creating Sysexts: the Flatcar Sysext Bakery

files to bake
+ config

+ metadata

https://github.com/flatcar/sysext-bakery/blob/main/README.md

bake.sh

Kind of like docker build

sysext image (.raw)

sysext

Kind of like your dockerfile

https://github.com/flatcar/sysext-bakery/blob/main/README.md

Publishing sysexts

Create checksum upload sysext
image + checksum
+ update conf to

http endpoint
(e.g. GitHub as part
of build pipeline)

Kind of lik
e docker push

sha256sum *.raw > SHA256SUMS

CONF

Create update conf
file (optional)

Baked Goods, Ready to Consume
https://github.com/flatcar/sysext-bakery/releases/tag/latest

• docker
• docker-compose
• kubernetes
• wasmcloud*
• wasmtime*
• cri-o (PR in progress)
• k3s (PR in progress)

* we’ll come to these later

https://github.com/flatcar/sysext-bakery/releases/tag/latest

A Brief Detour into Flatcar provisioning

YAML

Butane config
(human readable)

Butane
transpiler

JSON

Ignition config
(machine readable)

This is where we want to specify

the sysext(s) to use
https://coreos.github.io/butane/

https://coreos.github.io/butane/

Provisioning Flatcar with a Sysext

variant: flatcar
version: 1.0.0
storage:
 files:
 - path: /opt/extensions/wasmtime/wasmtime-17.0.1-x86-64.raw
 contents:
 source: https://github.com/flatcar/sysext-bakery/releases/download/latest/wasmtime-17.0.1-x86-64.raw
 links:
 - target: /opt/extensions/wasmtime/wasmtime-17.0.1-x86-64.raw
 path: /etc/extensions/wasmtime.raw
 hard: false

YAML

What about updates?

OS-independent
sysexts

OS-dependent
sysexts

OS images

• E.g. standalone go
binary, no OS
dependencies

• systemd-sysupdate

• simple semver based
mechanism over https

• Needs to update in
lockstep with OS due
to dependencies

• Use OS update
mechanism

• Flatcar update server
(Nebraska) extended to
support sysexts

• Sysexts part of OS
image à updated as
part of OS update

Configuring for Updates of OS-independent Sysexts
variant: flatcar
version: 1.0.0
storage:
 files:
 - path: /opt/extensions/wasmtime/wasmtime-17.0.1-x86-64.raw
 contents:
 source: https://github.com/flatcar/sysext-bakery/releases/download/latest/wasmtime-17.0.1-x86-64.raw

- path: /etc/sysupdate.wasmtime.d/wasmtime.conf
contents:

source: https://github.com/flatcar/sysext-bakery/releases/download/latest/wasmtime.conf
 links:
 - target: /opt/extensions/wasmtime/wasmtime-17.0.1-x86-64.raw
 path: /etc/extensions/wasmtime.raw
 hard: false
systemd:

units:
- name: systemd-sysupdate.timer

enabled: true
- name: systemd-sysupdate.service

dropins:
- name: wasmtime.conf

contents: |
[Service]
ExecStartPre=/usr/lib/systemd/systemd-sysupdate -C wasmtime update

- name: sysext.conf
contents: |

[Service]
ExecStartPost=systemctl restart systemd-sysext

YAML

What if I don’t want to pull the image at runtime?

bake_flatcar_image.shsysext(.raw) new flatcar image
including sysext

https://github.com/flatcar/sysext-bakery?tab=readme-ov-file#baking-sysexts-into-flatcar-os-images

// Create a qemu image (latest stable) with pre-baked wasmcloud
bake_flatcar_image.sh --fetch --vendor qemu_uefi wasmcloud:wasmcloud-0.82.0-x86-64.raw

https://github.com/flatcar/sysext-bakery?tab=readme-ov-file

Putting it all together: Wasm-Optimized Linux

Wasm = Web Assembly
By default, provably secure sandbox
Most languages compile to it
Runs on most OSes, architectures
VERY small size, super fast start
Wasm modules run in a Wasm
runtime

Putting it all together: Wasm-Optimized Linux

Kernel + systemd

Core wasm utils
loaded during init or
baked into image

Wasm modules
loaded at runtime

Immutable filesystem

Wasm-Optimized Linux

No Docker sysext
active – no docker
binaries in OS!

Worth noting that if you disable a sysext,

the binaries disappear from the OS file system.

Might be important for e.g. compliance.

So many Wasm runtimes and tools to choose from

Lunatic Modsurfer nerdctl runwasi

SpiderLightning
(slight)

Spin wamr (wasm-micro-
runtime)

wasm3 WasmCloud

WasmEdge
Runtime

wasmtime WaVe WaZero

More Wasm Goodness in Ralph’s Bakery
https://github.com/squillace/sysext-bakery

This is a great playground for all: feel free to

submit additional sysexts here or upstream

Flatcar sysext-bakery for mature projects

https://github.com/squillace/sysext-bakery

Takeaways

• systemd-sysext is a promising
new way to compose custom
Linux distros

• Immutable + minimal (with all
the benefits that brings), but
also flexible

• Flatcar has already embraced
as the way forward for
enabling flexible deployments
and customization

• Great platform for production
environments for Wasm and
more

Get involved!

CNCF Special
Purpose OS

Working Group

tag-runtime.cncf.io/wgs/spos

The Linux
Userspace API
(UAPI) Group

uapi-group.org

Flatcar Container
Linux Project

github.com/flatcar/Flatcar

https://tag-runtime.cncf.io/wgs/spos
https://uapi-group.org/
https://github.com/flatcar/Flatcar

